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Abstract—In the present paper a theory for elastic—plastic materials is developed that is valid for
general anisotropic response and is independent of the choice of the reference configuration from
which total strain is measured. Also, the constitutive equation for stress is hyperelastic. The main
idea is to focus attention on the current physical state of the material as characterized by the current
state of the microstructure in general and the atomic lattice in particular. Here it is assumed that
the elastic response of the atomic lattice remains unaffected by previous material processing. This
means that the lattice state of the material when it is macroscopically stress-free and at some
reference temperature can be used as a reference state for determining elastic deformations of the
lattice. To this end, a vector triad m, is introduced which models the orientation and elastic
deformation of the average atomic lattice in the present state, relative to this constant reference
lattice state. Anisotropies of the material response are referred to the vectors m,, which in principle,
are measurable in the present physical state. Even for elastic materials, this approach seems to
clarify the explicit dependence of anisotropy on identifiable material directions in the present state.
Furthermore, effects of texturing causing alignment of the triad due to material processing can be
modeled.

1. INTRODUCTION

This paper is mainly concerned with the physics of plastic flow of crystalline metals. In
particular, it is recalled that a macroscopic piece of a crystalline metal is composed of
millions of atoms which are arranged in reasonably structured atomic lattices. In general,
the atomic lattices contain a number of defects which may aid or inhibit plastic flow of the
metal. From the macroscopic continuum point of view, a material point represents a small
region of space which contains a very large number of atoms. Furthermore, two neighboring
material points constitute a macroscopic material line element like dX associated with the
fixed reference configuration or dx associated with the present configuration.

During large deformation plastic flow dislocations move through the atomic lattice
causing atoms to migrate through the lattice so that the nearest neighbors of an individual
atom change with time. This means that during plastic flow atoms may move from one
macroscopic material point to another. Of course, if the flow of atoms in and out of a
macroscopic continuum material point is balanced, then aspects of this physical feature
may be ignored in the continuum mechanics formulation. However, it is important to
emphasize that because of this flow of atoms neither of the macroscopic material line
elements dX or dx can be easily related to the current state of the atomic lattice.

In spite of the large total deformations that can occur during plastic flow, the atomic
lattice remains reasonably undistorted. In fact, it is usually assumed that the dilatation and
distortion of the atomic lattice are elastic and that they are the direct cause of stresses that
occur in the metal.

Recent reviews of theories for continuum plasticity (Naghdi, 1990) and crystal plas-
ticity (Asaro, 1983) indicate that constitutive equations for large deformation of elastic—
plastic materials are still in a state of development. Constitutive equations for elastic—plastic
materials can be developed by introducing a symmetric plastic deformation tensor C, or
plastic strain tensor [e.g. Green and Naghdi (1965)], by introducing a nonsymmetric plastic
deformation tensor F, [e.g. see Green and Naghdi (1965, footnote, p. 260) ; Lee and Liu
(1967) ; Lee (1969); Rice (1971); Mandel (1973); Dafalias (1985); Loret (1983)], or by
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introducing a nonsymmetric elastic deformation tensor F, [e.g. Besseling (1968)], each of
which is determined by an evolution equation for its time rate of change. In these devel-
opments: C, is referred to the reference configuration ; F, is referred to both the reference
configuration and an intermediate configuration ; F, is referred to both an intermediate and
the present configuration. Due to the controversial nature of issues related to the proper
invariance under superposed rigid body motions and generality of these theories. it is
preferable to first develop the present theory and only later in a discussion section relate it
to relevant existing theories.

In this work attention is focused on the following two physical problems with common
constitutive theories for elastic-plastic media.

(P1) Anisotropic hyperelastic formulations of constitutive equations for both elastic
and elastic—plastic materials require the functional form of the Helmholtz free
energy ¥ to be explicitly dependent on the particular choice of the reference or
intermediate configurations.

(P2) Plastic deformation from the reference configuration cannot be measured given
the present state of the material alone (Gilman, 1960, p. 99).

The main physical implication of the first problem (P1) is that in order to use a specific
functional form for it is necessary to somehow determine relevant information about the
particular choice of the reference or intermediate configuration which was used to determine
the material parameters that characterize the functional form. Even for an elastic material
which is stress-free and at temperature 8, in the reference configuration it is impossible to
determine the absolute orientation of the reference configuration from knowledge of the
present state of the material alone. This emphasizes the need for the constitutive description
of an anisotropic material to be explicitly dependent on material directions which can be
identified in the present state of the material. For elastic—plastic materials this problem is
even more severe because the stress-free shape of a homogeneously deformed material
changes as plastic deformation occurs.

The second problem (P2) is directly related to the problem of determining the reference
or intermediate configurations. However, (P2) manifests itself in a practical way because it
is necessary to specify initial conditions for C,, F, or F, in order to integrate the evolution
equations for their time rates of change.

The main objective of this paper is to develop a theory for elastic—plastic materials
that is valid for general anisotropic response and is independent of the choice of the
reference configuration from which total strain is measured. In particular, a theory will be
proposed which avoids the two physical problems (P1) and (P2) discussed above. Moreover,
the proposed theoretical structure explicitly connects anisotropic material response with
identifiable directions in the present material state. Although, the present work is motivated
by the physical discussions of Besseling (1968) and Mandel (1973), the resulting theoretical
formulation is different from that proposed by either of these authors. A detailed com-
parison with relevant existing theories will be presented in the discussion section after the
present theory has been developed.

Specifically, the present theory uses the idea proposed by Eckart (1948), and modified
by Besseling (1968), that an evolution equation for elastic deformation can be specified
which includes the relaxation effects of plastic deformation without introducing a plastic
deformation tensor explicitly. Also, the present theory uses the idea of Mandel (1973) that
elastic anisotropies can be described with reference to a triad of vectors. In addition, the
theory uses the idea argued by both Besseling (1968) and Mandel (1973) that the rotation
and deformation of the atomic lattice is not directly related to the total deformation (relative
to the reference configuration) of a continuum material element.

The theory is developed by focusing attention on the current physical state of the
material as characterized by the current state of the microstructure in general, and the
atomic lattice in particular. As the material deforms, the atomic lattice and microstructure
rotate and deform. Here it is assumed that the elastic response of the atomic lattice remains
unaffected by previous material processing even though dislocation and defect generation
and annihilation may cause changes in the resistance to plastic flow. This means that the
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lattice state of the material, when it is macroscopically stress-free and at some reference
temperature 8,, can be used as a reference state for determining elastic deformations of the
lattice. For convenience this Reference Lattice State is denoted by the abbreviation RLS.

To formulate the theory, a triad of vectors m; (i = 1, 2, 3) is introduced (at each
material point) which characterizes the dilatation, distortion and orientation of the average
atomic lattice in the present state relative to the RLS. These microstructural variables are
determined by evolution equations of the form

m; = L,m, ()

where the second-order tensor L, requires a constitutive equation which includes plastic
relaxation effects, and a superposed dot denotes material time differentiation holding the
location X of a material point in the reference configuration fixed. Since the vectors m, are
directly related to the present state of the atomic lattice, the initial values of m, required to
integrate (1) can, in principle, be measured in the present state. Furthermore, since the
vectors m, characterize the atomic lattice, they are not directly connected to the material
line elements dX or dx, which is consistent with the fact that during plastic flow atoms
migrate through the atomic lattice.

The explicit use of the vectors m, as a basis for tensors referred to the present con-
figuration has two main advantages over direct formulations: (A1) material anisotropies
characterized by functions of these components are explicitly specified in terms of directions
that can be determined by the orientation of the material in its present state. These directions
are independent of the particular choice of the reference or intermediate configurations
because m, characterize material (lattice) directions which, in principle, are measurable in
the present state; (A2) these components are trivially invariant under superposed rigid
body motions (hereafter denoted by SRBM) so that arbitrary functions of these components
may be specified without effecting proper invariance under SRBM.

It will be shown that the present development produces an approach to the formulation
of constitutive equations for nonlinear elastic response which retains the advantage (Al).
Specifically, the resulting equations for nonlinear elastic response are not formulated in
terms of the deformation gradient from the reference configuration and they do not depend
on the particular choice of the reference configuration.

In the following sections the microstructural variables that are used to characterize the
elastic deformation (relative to the RLS) and orientation of the atomic lattice in its present
state are described. After briefly reviewing the thermodynamical framework within which
restrictions on the constitutive equations are developed, general constitutive equations
for both rate-dependent elastic-viscoplastic response and rate-independent elastic—plastic
response are discussed. Then, the special cases of elastically isotropic response and small
elastic deformations are discussed, and the relationship of the present theory to other
existing theories in the literature is presented. In a companion paper (Rubin, 1994) specific
constitutive equations and examples of the response to large deformation uniaxial stress,
simple shear and isochoric extension are presented.

Throughout the text : tensors are denoted by bold faced symbols ; the dot product A *B
between two tensors denotes the usual scalar product when A, B are vectors and it denotes
the scalar tr (AB”) when A and B are second-order tensors ; the notation A x B denotes the
usual cross product between two vectors A, B; the symbol ® denotes the tensor product
between two tensors ; the usual summation convention for repeated indices is implied except
for the indices (e, p, m) which are used to denote specific tensors.

2. THE MICROSTRUCTURAL VARIABLES

Here, a simple continuum model is considered which focuses attention on the current
orientation and elastic deformation of the average atomic lattice. As mentioned in the
introduction, the stress-free state of the atomic lattice at reference temperature 6, can be
used as a Reference Lattice State (RLS) for characterizing deformation of the atomic
lattice. In this regard, it is well known (Richman, 1967, p. 30) that the unit cells of the
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Bravis lattices can be characterized by three atomic lengths and three atomic angles which
determine a parallelepiped. Alternatively, the state of an atomic lattice (or the par-
allelepiped) in the RLS can be characterized by a right-handed triad of three linearly
independent vectors D; (with D, x D, +D; > 0) which have the dimensions of length and
are measured relative to a fixed right-handed set of orthonormal base vectors e,. Since D;
are not orthonormal vectors it is convenient to define the reciprocal vectors D’ by

DD, =9, )

where §; is the Kronecker delta symbol. Furthermore, let d; be the right-handed triad of
three linearly independent vectors characterizing the parallelepiped associated with the
present state of the atomic lattice.

Next, the three vectors m, are introduced which are microstructural variables that
represent the current state of the atomic lattice and are defined by

m; = (d, @ D)e,. 3)

It follows that m, are a right-handed set of linearly independent unitless vectors having the
property that

, d, xd,-d
m”“zmlxmz'm3=D—lx—D—zT;—>O, “4)
1 2 3

which shows that m'/? is the ratio of the volumes of the parallelepipeds defining the present
state and RLS of the atomic lattice. Since m; are not necessarily orthonormal vectors it is
convenient to introduce the reciprocal vectors m’ and the positive definite metrics m;, mY,
such that

m-'m =34, m;=m-m, m’'=m"- m. (5a,b,c)
Furthermore, since m,; is a positive definite matrix, its unique square root n;; and the inverse
n¥ of its square root exist satisfying the equations

ir

— — — 5
=n,n,, H;=Hn; n'n,=7a,

mij (6aa b9 C)
It then follows from (5) and (6) that, since n,, is uniquely determined by m,,, an orthonormal

set of vectors a, may be defined uniquely in terms of m; by the formulas
m, =n,a,, a,=n"m, a-a =39, (7a.b,¢)

Since it has been assumed that the relative dimensions of the atomic lattice in an RLS
are independent of material processes, it follows that in any RLS the vectors d, are related
to the associated vectors D; by a proper orthogonal tensor R such that

d,=RD;, RR" =1 detR=1, (8a,b,c¢)
where I is the unit tensor. Consequently, with the help of (3), (5) and (8) it follows that

m,; =9, inanyRLS. )

Within the context of the above characterization of the atomic lattice, the vectors d,
can, in principle, be measured in the present state (at nonzero stress and general temperature
) using X-ray diffraction techniques. This means that the relevant features of the RLS can

also be measured. Thus, the present values of m; can, in principle, be measured. Then, using
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(7) the present values of a; can also be measured and used to characterize the present
orientation of the atomic lattice.

Above, the use of a triad of vectors m; was motivated to describe the dilatation and
distortion of a single atomic lattice. This notion can be generalized by assuming that the
vectors m, are simple continuum representations of the average atomic lattice at a material
point. From a microscopic point of view, the atomic lattice may be inhomogeneous because
individual unit cells can be locally distorted by the presence of dislocations and other
defects. This means that the values of m, associated with a macroscopic material point
represent average properties of a region that includes a large number of atoms. Similarly,
with reference to polycrystalline materials or granular materials, the values of m, represent
average properties of a region that includes a large number of crystals or grains. At present,
the specific averaging process used to define m, in terms of the current physical lattice state
is left undefined even though it is assumed that both the magnitudes and directions of m;
associated with the present state of the material can be uniquely determined. Consequently,
it is assumed that the present values of m; can, in principle, be measured. In this regard, it
should be mentioned that the identification of m, depends on the specific constitutive
equations that are used to predict material response. Thus, within the context of specific
constitutive assumptions one must search for features of the material response which help
characterize m,. For example, one can use the directions a, (defined uniquely by m;) to
characterize anisotropies of the material in its present state. This characterization is physi-
cally appealing because the anisotropies are referred to directions which are determined by
the present state of the material instead of relative to directions associated with the speci-
fication of an arbitrary reference configuration.

With reference to SRBM the value of a quantity in the superposed configuration is
denoted by the same symbol with a superposed (+). Since m; are measured in the present
state, which is associated with the present configuration, it follows that under SRBM

m” = Qm, (10)

where Q(¢) is an arbitrary proper orthogonal tensor function of time ¢. Thus, with the help
of (3), (5), (7), (10) and the knowledge that D; and e, are unaffected by SRBM it can be
shown that under SRBM the quantities m,;, d, and a, transform by

my =m;, 47 =Qd; a/ =Qa,. (11a,b,c)
Also, using eqn (10) and the evolution equation (1) it follows that under SRBM, L, must

transform by

L; =QL,Q"+Q, (12)

where Q is the skew-symmetric tensor defined by

Q=0Q" = -0 (13)

3. THERMODYNAMICAL FORMULATION

By way of background, let: X be the location of a material point in an arbitrary but
fixed reference configuration; x be the location of the same material point in the current
configuration at time 7; F = 0x/0X be the total deformation gradient ; C = F'F be the right
Green total deformation tensor ; # be the positive absolute temperature with reference value
0y. This section briefly reviews the main features of the thermodynamical procedures
proposed by Green and Naghdi (1977, 1978, 1984) for general deformable media. Within
the context of this formulation the usual laws of conservation of mass, and balances of
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linear and angular momentum, and energy are supplemented by a balance law of entropy
which in local form becomes

pn = p(s+&)—divp, (14)

where p is the mass density per unit present volume, # is the specific entropy, s is the specific
external rate of supply of entropy, ¢ is the specific rate of internal production of entropy
and p is the entropy flux vector per unit present area. Furthermore, the quantities s and p
are related to the specific external rate of heat supply r, and the heat flux vector q per unit
present area by the formulas

_r ..
5—0, P 9 (15a,b)
In general, £ may be separated into two parts
pb¢ = —p-g+p0Z’, (16)

where g = 00/0x is the temperature gradient with respect to the present position.

Letting ¢ denote the specific internal energy, the local equation for entropy (14) can
be used to rewrite the local equation for energy in terms of the specific Heimhoitz free
energy ¥ = ¢— 6, such that

p(J+nf)—T-D+pbE’ =0, (17)

where T is the Cauchy stress and D is the symmetric part of the velocity gradient L defined
by

L=FF'=D4W, (18a)
D = 4(L+L") = D7, wzé(L_LT) = —W7, (18b,¢)

Also, in (17) the reduced form of balance of angular momentum has been used which
requires T to be symmetric

T =T. (19)
In general, constitutive equations must be specified for the quantities

{wa r’aé/’T’ p}’ (20)

and constitutive restrictions are obtained by demanding that the reduced forms of the
energy equation (17) and the balance of angular momentum (19) be satisfied for all
thermomechanical processes. Additional restrictions due to the second law of thermo-
dynamics (Rubin, 1992) require

O¢

’? 2 7b’
66>0’ pOE 0 (21a,b,¢)

—q:g>0 forg#0,

to be satisfied for all thermomechanical processes. The restriction: (21a) requires heat to
flow from hot to cold ; (21b) requires the specific heat to be positive ; (21c) requires nonideal
material response to be dissipative.
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4. CONSTITUTIVE EQUATIONS

From a constitutive point of view, it is assumed that the variables m, are determined
by the evolution equation (1) for the rates n,. In order to discuss a rather general set of
constitutive equations for anisotropic elastic—plastic materials it is desirable to introduce
additional hardening variables which characterize the resistance to plastic flow and which
are also determined by evolution equations. For the present purposes, it suffices to examine
the structure of the theory by introducing a scalar measure of isotropic hardening x and a
symmetric second-order tensorial measure of directional hardening §, such as that intro-
duced by Bodner (1985) to model the Bauschinger effect. Both x and # are specified by
constitutive equations for their rates , p.

Before discussing general forms of the constitutive equations for the rates {m, &, B} it
is convenient to first consider certain restrictions on the constitutive equations due to
invariance under SRBM. To this end, it is assumed that the quantities {6, «, g} transform
under SRBM by

0t =0, xt =x, B+ =QpQ". (22a,b,¢)

The invariance properties of m; have already been discussed [see eqn (10)]. Next, it is
assumed that the Helmholtz free energy ¥ is a function of the variables

{m,; 6,x, B} (23)

Since m;, are linearly independent, the tensor f may be represented in terms of its covariant
components f;, relative to the basis m,, such that

B=pBm@m, B;=p(m®m,). (24a,b)

Thus, without loss in generality, the set of variables (23) may be replaced by the alternative
set

{m,; 0,x, B;}. 25)

Furthermore, using the properties (10), (22¢) and (24b) it may easily be shown that
i =By (26)

Then, invariance under SRBM requires the functional form of i to be restricted by
¥ = y(m,6,x,B,) = §(Qm,6,x,8,) = y*, (27)

for arbitrary proper orthogonal Q. The necessary and sufficient condition for y to satisfy
this restriction is that y be an arbitrary function of the variables

¥ = {my,0,x, B} (28)

Recall now that the velocity gradient L, its symmetric part D , and its skew-symmetric
part W transform under SRBM by

L* =QLQ"+Q, D* =QDQ", W*=QWQ"+Q, (29a, b, ¢)

where €(¢) is defined by (13).
For an elastic—plastic material it is assumed that the constitutive equation for m, is
given in the form (1) where L., is a second-order tensor function of the variables

SAS 31:19-C
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{#",m;;L,6}, (30)

and the variables L and 6 are included to allow for the possibility of describing rate-
independent response. Thus, without loss in generality, L, may be separated additively into
the form

L,=L-L, (31

where L; is a function of the same variables (30). However, in view of the transformation
relations (12) and (29) it follows that L, transforms by

LS =QL,Q". (32)

Furthermore, using the restriction (32) it can be shown that L, cannot depend on W and
that it must be a function of the form

L, = L,;(* ;D;,0)m @ m’, (33)

where L,; and D;; are the covariant components of L, and D, respectively, relative to the
basis m;

Lyy=L,»m®m,), D,;=D"(mm,). (34a,b)

Also, it may be shown that L; and D, transform by

pij

L;’i = Ly, Di}- = D;;. (35a,b)
The physical meaning of the separation (31) will be discussed after restrictions on the
proposed constitutive assumptions have been developed.

In the following, constitutive equations for the rates {m,, &, f§,} are proposed which
characterize both rate-dependent elastic—viscoplastic materials without a yield surface, and
rate-independent elastic—plastic materials with a yield surface. For both types of materials
it is assumed that m;, is given by (1) with L,, represented in the form (31), and that L, and
B are represented in the forms (33) and (24a). For elastic—viscoplastic materials it is further

assumed that L, «, ,3,, are specified by

Lpij = FZ:

s, k=TK—K, B,=TB,—B, (36a,b,c¢)
where {I', L,,;, K, K, B, B,;} are functions of the variables 7~ only. In (36) the functions X
and B; model the effects of thermal recovery of hardening, which are explicitly rate-
dependent.

For rate-independent elastic—plastic response, it is assumed that I" also depends linearly
on the rates {D,;, §}. Furthermore, thermal recovery of hardening must vanish

K=0, B,=0. (37a,b)

Such a theory can be developed by introducing a yield surface in strain space (Naghdi and
Trapp, 1975)

9(¥’) <0, (38)

which separates the boundary between elastic and plastic response. Then, the function I
can be determined by loading and unloading conditions. To this end, it is noted that
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L,=D,+W,, (39a)
D, =;L.,+L3) =D =D-D, (39b)
W = {(Ln—L1) = ~ Wi = W-W,, (33)
L,=D,+W,=TL, (39d)
D, =;(L,+L}) =D; =TD,, (39)
W,=1(L,~L) = —W; =TI'W,, (39)

so that the rate of change of the metric m;; can be written in the form
iy, = 2D, (m;®m;) = 2D+ (m; ® m;) —2D,,- (m; ® m,). (40)

Now, defining the functions

Og og .
j=2—2(m, e e 41
g 26mij(m,®mj) D+690’ (41a)
0g . 0g 0g
7= , D —-—-2K--28, 41
g=2 o, (m;®m,) D, aKK 38, By, (41b)
the quantity ¢ may be written in the simple form
g=4-Tg, (42)

and the function I may be determined by the loading conditions

r=0 forelastic response (g < 0), (43a)
=0 for unloading (9 =0and g <0), (43b)
I'=0  forneutralloading (g =0 and § = 0), (43¢)
I'=g/g forloading {(g=0and g > 0). (43d)

Notice that (43d) is determined by the consistency condition which requires ¢ to vanish
during loading.

To complete the constitutive description it is assumed that y, 5, &', T, p are functions
of the forms

y=y@), n=n0), &=¢;0D) (44a,b,¢)
T=T(,m), p=p(*,gm), (44d,¢)
where
p=p(¥,g)m, g =g'm, (45a,b)
p=p, 9 =9, (45¢,d)

and for simplicity the known result that {y, n, T} cannot depend on the temperature
gradient g has already been used. It is important to note that {y, n, T} are assumed to be
independent of rates and that the function p,(¥", g;) is an arbitrary function of its arguments.
Now, with the help of eqns (36), (40) and (44), the reduced energy equation (17) may be
rewritten in the form
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0
<0ﬁ+n)0+|:2paw(m® ;) — T]

3 W 0
+p|:6£’-2anlflj(m,-®mj)' +_"’h+5g;ﬁ,,] 0. (46)

For an elastic-viscoplastic material the coefficients of the rates {#, D} and the last term in
square brackets are independent of the rates {6, D}. Also the coefficient of D is symmetric.
Thus, for arbitrary but fixed values of ¥7, the rates {0 D} may be chosen arbitrarily to
deduce that

a ]

=__a‘g, T=2pa—’;/’;(m,®mj), (47a,b)
oD Wi W g

pf¢’ =T-D, p[akw aﬁ,-,ﬂ"’]’ (47¢c)

must hold for arbitrary thermomechanical processes. Alternatively, for an elastic—plastic
material with a yield surface, either the values of ¥ are such that the response is elastic
with vanishing values of {D,, k, §,} or the values of ¥~ are such that the material is at the
elastic-plastic boundary and the rates {6, D} may be chosen such that the material unloads
elastically, again with vanishing values of {D, , B} In either case, the coefficients of the
rates {0, D} are independent of these rates so the results (47a, b) may be deduced. Further-
more, since the results (47a, b) are independent of rates they must hold for all thermo-
mechanical processes including processes with nonvanishing values of {D,, , Bu}- Conse-
quently, substitution of (47a,b) into (46) yields the result (47c). Thus, the results (47a, b,
¢) hold for either elastic—viscoplastic or elastic-plastic materials of the type considered here.

The functional forms of the constitutive equations (36) and (44) must be suitably
restricted so as to satisfy the three forms of the second law of thermodynamics (21a, b, ¢).
In addition, it has been assumed [see eqn (9)] that m; = J,, whenever the present state is
stress-free and at reference temperature 6,. In view of the result (47b), this means that the
functional form of the Helmholtz free energy i must also be restricted so that

0
X 500, =0, (48)
iy

for any possible values of k and f,,.

With regard to the additive separation (31) it is noted that L, characterizes the
relaxation effects due to plastic deformation and L, characterizes the elastic part of the
velocity gradient L. The term L, is interpreted as the elastic part because in the absence of
plastic relaxation effects (L, = 0, L, = L) eqn (1) may be integrated to deduce that

m; = Fm,(0), (49)

where m;(0) are the values of m; measured in the reference configuration and F is the
deformation gradient between the reference and present configurations. Thus, for this
special case, m; may be identified with material line elements. Furthermore, general aniso-
tropic elastic response can be obtained by specifying vanishing values for L,, K and ,B,]

If follows from (4) that the ratio of the volume of the lattice in its present state to that
in the RLS may be characterized by the dilatational measure J,,
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Jo=m'2, m = det (m,), (50a, b)

where it is noted that m is also equal to the determinant of the metric m,;. Now, using the
evolution equation (1) and the separation (31) it can be shown that

%=Lm-I=D-I—Dp~I=§—DP-I, (51
where J = det F is the relative volume between the present and reference configurations.
For nonporous metals it is observed that the volume of the metal in a stress-free state at
reference temperature 6, remains reasonably unaffected by prior relaxation effects of plas-
ticity. This is usually interpreted to mean that plastic deformation is incompressible. Thus,
within the present context, this restriction can be imposed by requiring the relaxation effects
of plasticity to be isochoric so that (Van der Giessen, 1989, p. 20)

D, I1=0. (52)

Consequently, when (52) is satisfied then J, is proportional to J.

5. ELASTICALLY ISOTROPIC RESPONSE

In view of the restriction (48) it follows that m;; is a measure of elastic deformation
which causes nonzero stress. For the discussion of a material which exhibits elastically
isotropic response it is convenient to introduce a tensorial measure of deformation of the
lattice from the RLS to the present state. To this end, the symmetric second-order tensor
B, is defined by the formula

B,=m®m, (33)

which has the properties that
B,=1 form;=9,, (54a)
B: =QB,Q". (54b)

For an elastically isotropic material it is assumed that the Helmholtz free energy depends
on my; only through the invariants of B,,. Following the work of Flory (1961) for elastic
response and Besseling (1968, p. 38) for elastic—plastic response the effects of dilatation and
distortion are separated by defining the distortional part B, of B,, by the formulas

Jn = [detB, ], (55a)

B, =J;*’B,, det(B,) = 1. (55b,¢)

where the result (55a) connects the determinant of B, to the dilatational measure J,, defined
in (50). Since B;, is a unimodular tensort it has only two independent scalar invariants
which may be written in the forms

a, =B, I=J3"m,, (56a)
o, = B;n * Bll.n = J;4/3 mum,j. (56b)

tThe notation prime is not used in the sense of an operator so that B, should not be confused as a deviatoric
tensor even though later T” will denote the deviatoric part of the stress tensor.
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Thus, for elastically isotropic response it is assumed that the Helmholtz free energy ¢
is a function of the form

¥ =y ). (57
where the variables % are defined by
U = {Jm 01, 0,0,5, B} (58)
Now, with the help of the results
0J : ; .
Wi/m, ®m; =J,m/m, @m; =2 J, 1, (59a)
0oy _ g2 LR Ty R _ (R .
om,™ ®@m; = J5*? [0, — 3By Dm"Im; ® m, = [B;, —(By, - DI], (59b)
Oat,

a—n;jmi ®m; = 2J,* [m,;—;(BL-DmIm, @ m, = 2[B? —:(B;2-DI],  (5%)
together with the restriction (47b) it may be shown that the pressure p and the deviatoric
part T’ of the Cauchy stress are given by the formulas

T=—pI+T, T-I1=0, (60a, b)
oy
p= _meE’ (60C)
0 0
T = 2P—¢[B;,—§(B§n‘l) 1]+4P—¢[B§§—§(B§§ -D]. (60d)
oo, Jot,

Further, with reference to the restriction (48) it is noticed from (60d) that the deviatoric
stress T’ vanishes when By, = I even when the temperature is not equal to the reference
temperature. This means that the restriction (48) will be satisfied if i is restricted by the
condition

oy
EZ—O forJ,=1 and 0=0,. (61)

It is of interest to note that by using (1), the tensor B, can be calculated directly by
integrating an equation of the form

B, =L,B,+B,L.—3(D, 1)B;. (62)

Furthermore, by using the separation (31) and the plastic incompressibility condition (52)
(62) may be rewritten in the alternative form

B, = [LB,,+B,L"—2(D-1)B,] —[L,B;, +B,L]]. (63)
It also follows that
8, = By, -1 =2[B;,-D— (D I)(B;,- D] —2[B;,* Dy, (64a)

&, = 2B;," B}, = 2[B;2-D— (D -I)(B;? - D] —-2[B; - D,]. (64b)
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This means that even though the invariants o, and «, are not influenced by the plastic spin
W, the direction of B,, and hence the direction of stress T” are influenced by W,

Although the stress response associated with the functional form (57) is elastically
isotropic, the plastic response may retain or develop directional dependence. This means
that the functional forms for the evolution equations (36) remain general. However, as a
special case, it may be of interest to specify the relaxation effects of plasticity on the
evolution of By, directly by taking L, to be a solutiont of the equation

LB, +B, Ll =TA, 65)
so that (63) may be rewritten in the form
B, = [LB,+B,L"— %(D ‘DB, ]-TA. (66)

In (65) and (66) the tensor A requires a constitutive equation, which in view of the plastic
plastic incompressibility condition (52) must satisfy the restriction

AB ' =0. (67)

Assuming that A is a function of B/, and the variables % only, it follows from invariance
under SRBM that A must be an isotropic function of B;, which may be represented in the

general form
’ 3 ’ B;n ° I ’
A=a, (%) [Bm - (B,’n“ - I)I:l +a, (%) [B,,,z - ( 3 )Bm]. (68)

This means that as far as the calculation of By, is concerned it is not necessary to specify L,
explicitly because it is enough to specify A. In this regard, it is noted that constitutive
equations of the type (66) and (68) have been considered by Leonov (1976).

Using the definition (5a) and the evolution equation (1) it can also be shown that

m' = —Lim! (69)
so that with the help of (24) the evolution equation (36¢c) may be rewritten in the form
B=-LIg—pL,+I'N—B, (70)
where the tensors N and B are defined by
N=Nm®w, B=Bm@n. (71a,b)
Now, using the representations (31) and (36a), eqn (70) may be rewritten in the form
B=—-LTB—BL+TN—-B, N=B+LIg+pL, (72a,b)

Thus, as a special case it could be assumed that the tensors N and B are isotropic functions
of B;, and 8.

t1t can be shown that L, cannot be uniquely determined by eqn (65) unless it is a symmetric tensor.
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6. SMALL ELASTIC DEFORMATIONS

For small elastic deformations it is assumed that the metric m;; may be expressed in
the form
my = 6,;+2¢,, (73)
where ¢; is a symmetric strain tensor which is of order ¢ relative to unity. In the following
expressions, terms of order &* are neglected consistently relative to terms of order .
Consequently, using (6a), (7a) and (73) it may be shown that

m, = (5im + aim)ama a; = (éim - Sim)mm’ (743, b)

where a; are the orthogonal vectors defined by (7b). Next, with the help of (40) and (74)
one obtains

é&;=D-D) (a,®a), (75)
so that differentiation of (74b) and use of (1), (31), (39) and (75) yields
4= (W-W)a, (76)
Furthermore, in view of the results (11a, c) it follows that under SRBM ¢, transforms by

& = &y, (77)
and a, continues to transform by (11c). Consequently, for small elastic deformations, a, is
an orthonormal triad related to specified crystallographic directions which is determined
by integrating (76), and ¢; is the elastic strain which is determined by integrating (75).

In order to consider the more special case of rigid—plastic response it is assumed that
the constitutive equation for D, can be inverted to obtain an expression for m,; (or its
deviatoric part) in terms of the components [D, - (a; ® a,)]. Then, with the help of these
values of m;;, eqns (74), (75) and the constitutive equation (47b), the stress T can be
written as a function of D, a, and possibly a constraint response for the pressure of an
incompressible material. Finally, in the rigid—plastic limit ¢ is negligible in (75) so that D,
can be approximated by D.

7. DISCUSSION

In the previous sections a general theoretical structure for modeling anisotropic elastic—
plastic material response has been developed which is independent of the choice of the
reference configuration from which total strain is measured. Specifically, the theory requires
specification of functional forms for: the Helmhoitz free energy (44a); the entropy flux
(44e); the relaxation effects of plasticity (36a); the evolution equations of hardening (36b, c).
Then the entropy, Cauchy stress and rate of entropy production are determined by the
expressions (47) and (16). In addition, the restrictions (21) due to the second law of
thermodynamics and the physical restriction (48) must be satisfied. Next, using the result
(31) the evolution equations (1) and (36b, c) for m,, ¥ and f§; may be integrated to deduce
the response to any specified thermomechanical process.

Within the context of the present development it has been proved [see the discussion
of eqn (31)] that the velocity gradient separates additively into a part L, which controls
the evolution of elastic deformation and a part L, which controls the relaxation effects of
plasticity. An interesting consequence of this separation is that when the Helmholtz free
energy is independent of the hardening variables, the rate of plastic dissipation reduces to
the usual expression for the rate of plastic work, since (21c¢) and (47c) yield
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p8E’ =T*D, > 0. (78)

In order to model the orientation and the elastic deformation of the average atomic
lattice a vector triad m; has been introduced which is determined by the present physical
state of the material. The metric m,; (5b) determines the elastic deformation of the lattice
relative to the Reference Lattice State (RLS) and the orthonormal vectors a; (7b) determine
the present orientation of the lattice. In this sense, material anisotropies may be referred to
the directions a, which are determined by the current physical state of the material. An
important physical feature of the present development is that the quantities {m,, x, §;} are,
in principle, measurable in the present state of the material. This means that the initial
values of {my, k, f;} are measurable so the evolution equations for the rates of {m,, «, f,,}
can be integrated without ambiguity.

To further elaborate it is noted that the forms of the constitutive equations are
intimately related to the specification of m, in the present state. For example, for the simple
case of a single atomic lattice discussed in the beginning of Section 2, the vectors m; are
related to the directions e; by the formula (3). This means that m, will depend on the specific
choice used to define the lattice directions D; relative to the fixed vectors e;. Consequently,
the functional form (44a) for the Helmholtz free energy y will also depend on this choice.
This merely means that in order to characterize the anisotropic response of a material
through a specific functional form for \ it is necessary to also specify the reference frame
(relative to identifiably directions in the present material state) with respect to which the
functional form was evaluated. This is of course well known for fiber reinforced composite
materials where it is natural to use the fiber directions as a reference for modeling anisotropic
elastic response.

For thermoelastic materials it is common to specify the Helmholtz free energy in the
form

¥ =y(C.0) (79)

which has the physical problem (P1) discussed in the Introduction because C and the
functional form for ¥ depend explicitly on the specification of the reference configuration.
In contrast, specialization of (44a) for elastic response suggests that

l/l = lﬁ (mij’ 0)7 (80)

which has the physical features that the functional form for ¢ is independent of the
choice of the reference configuration and that it depends explicitly on material directions,
characterized by m,, which are measurable in the present material state. Any material
symmetries which cause nonuniqueness of the vectors m;, must be accompanied by com-
plimentary restrictions on the constitutive equations that ensure the material response is
unaffected by this nonuniqueness. This discussion suggests that even for elastic materials,
this approach seems to clarify the explicit dependence of anisotropy on identifiable material
directions in the present state. Further in this regard, it is recalled that for the simplest case
of elastic response without plastic relaxation effects [see eqn (49)], the vectors m, can be
related to tangent vectors associated with convected coordinates along the e, directions in
the RLS. Then the material anisotropies can be defined relative to these convected coor-
dinates and the functional form (80) becomes similar to that given by eqn (2.3.8) of Green
and Zerna (1968, p. 63) with m,; playing the role of the metric.

In order to discuss the relationship of the present theory with others for elastic—plastic
response it is recalled that the theory proposed by Green and Naghdi (1965) is equivalent
to assuming the existence of a symmetric positive definite plastic deformation tensor C,
that is determined by integrating an evolution equation of the form
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C,=A, (81)

where A, requires a constitutive equation. Then, the elastic response of the material is
specified by taking

Y =y (C.C,,0). (82)

where hardening variables which are usually included in (82) are not exhibited explicitly
here because they are not particularly relevant to the present discussion.

Green and Naghdi (1965, footnote, p. 260) stated that for full generality the plastic
deformation tensor should be nonsymmetric. Within this context it is possible to define a
nonsingular nonsymmetric tensor F, by the evolution equation

F, = AF,, (83)

where A, requires a constitutive equation. In particular, it is noted that the invariance
properties of F, under SRBM are detemined by the invariance properties of A,. Thus, for
example, if A, is trivially invariant under SRBM then F, will also be trivially invariant
under SRBM. Using F, the elastic response of the material can be determined by specifying
the Helmholtz free energy in the form

¥ =y (CF,.0). (84)

instead of the form (82). A particular example of a constitutive equation for A, associated
with crystal plasticity has been suggested by Rice (1971).

The formulations using either (82) or (84) suffer from the physical problem (P1)
discussed in the Introduction because the Helmholtz free energy depends explicitly on the
choice of the reference configuration through the tensor C. Obviously, this problem persists
even for elastic response with constant values of C, and F,, which has been alluded to by
Onat (1982, p. 244) with reference to the deformation gradient F. Moreover, since C, and
F, are kinetic and not kinematic quantities it is necessary to specify how they transform
under changes of the reference configuration in order to explore the influences of these
changes on the functional forms (82) and (84). Also, assuming that C, and F, are measures
of plastic deformation from the reference configuration, it follows that the formulations
using either (82) or (84) suffer from the physical problem (P2) because the values of C, and
F, cannot be measured given the present state of the material alone.

Another approach, which has been used by a number of authors (Lee and Liu, 1967;
Lee, 1969; Rice, 1971; Mandel, 1973; Dafalias, 1985; Loret, 1983), is to assume that the
total deformation gradient separates multiplicatively into an elastic part F, and a plastic
part F,, such that

F = F.F, (85)

In (85) the tensor F, is presumed to describe the plastic deformation of the line element
dX in the reference configuration into the line element dy in an intermediate unstressed
configuration at reference temperature 6,, and the tensor F, is presumed to describe the
elastic deformation of dy into the line element dx in the present configuration such that

dx = F.dy, dy = F,dX. (86a,b)

It is well known that for inhomogeneous deformations, F. and F, are not integrable, whereas
F is always integrable in terms of a displacement field.

If the plastic deformation F, is determined by an evolution equation of the type (83)
then (85) is merely a definition of the tensor F, since
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F. = FF; . @87)

In this regard it follows that the invariance properties (under SRBM) of F, are determined
by the invariance properties of F and F,. However, if F, is not determined by an evolution
equation, then the separation (85) is not unique and the proper definition and invariance
properties (under SRBM) of F. and F in (85) are controversial [see Naghdi (1990) Sections
4A and 4C]. Setting this point aside it is possible to define the symmetric elastic deformation
tensor C, by

C. = F[F.. (88)

One of the main motivations for defining C, is the tacit assumption that the Helmholtz
free energy ¥ for an elastic—plastic material depends on total deformation F and plastic
deformation F, only through the elastic deformation C, so that i has a similar form to (79)
for an elastic material

¥ =y(C.,0). (89)

Still another approach, which has been used by Eckart (1948), Besseling (1968), and
Leonov (1976), is to propose a constitutive equation for the evolution of elastic deformation
directly without introducing a plastic deformation tensor. For example, Eckart (1948) and
Leonov (1976) independently introduced an evolution equation for the rate of change of
the symmetric tensor B, = F,F!. In their formulations (Eckart, 1948; Leonov, 1976), the
tensor B, had invariance properties under SRBM which only allowed for the charac-
terization of elastically isotropic material response using the functional form (89) with C,
replaced by B.. In contrast, Besseling’s (1968) formulation proposed an evolution for the
nonsingular nonsymmetric tensor F, of the form

F.=LF,, (90)

which allowed the development of general anisotropic constitutive equations using (89)
with C, defined by (88). In this formulation the tensor L, requires a constitutive equation
which includes the relaxation effects of plasticity without introducing F, explicitly. Again,
itis noted that the invariance properties of F. under SRBM are determined by the invariance
properties of L..

Within the context of the interpretation (86) it follows that F,, is influenced by changes
in both the reference and intermediate configurations and F, is influenced by changes in
both the intermediate and present configurations. Thus, the formulation associated with
(86) which uses the functional form (89) suffers from both of the physical problems (P1)
and (P2) discussed in the Introduction. Moreover, within the context of the formulation of
Besseling (1968) the line element dy in the natural reference state changes with time due to
plastic deformation in a similar manner to the changes of dy in (86c) due to plastic
deformations. Thus, the formulation associated with (90) which uses the functional form
(89) suffers from the physical problems (P1) because the initial value of F, cannot be
determined by knowledge of the present state of the material alone.

Mandel’s (1973) physical description of specific directions in the isoclinic intermediate
configuration is similar to the description by Besseling (1968) of directions in the natural
reference state. As previously noted, the notion used here that the average atomic lattice
can be represented by a triad of vectors m, is similar to the notion used by Mandel (1973)
to represent the atomic orientation of the relaxed configuration with a triad of directors.
However, the theory proposed by Mandel (1973) uses the multiplicative separation (85) so
that it suffers from both of the physical problems (P1) and (P2). Moreover, Mandel’s
theory assumes that the directors remain orthonormal vectors that cease to rotate when
plastic deformation ceases. In contrast, the present theory differs from that of Mandel
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(1973) in three main ways: (a) it is independent of the choice of the reference configuration;
(b) it is developed without introducing a definition for a plastic deformation tensor and
without assuming that the total deformation gradient can be represented as the product of
elastic and plastic deformation tensors (85); (c) the vectors m, represent the present state
of the material and therefore rotate and deform even when plastic relaxation effects are
absent. Also, the vectors m, characterize the present state of the microstructure and are not
directly related to either of the line elements dX or dy or dx. In this regard, the use of the
vectors m, is consistent with the notions proposed by Onat (1968) which emphasize that
state variables should be measurable in the present state. Consequently, the present theory
does not suffer from either of the physical problems (P1) or (P2).

The need for specifying a constitutive equation for plastic spin W, is apparent in the
work of Besseling (1968) which focused on the relaxation effects of plasticity as well as in
the work of Kratochvil (1971, 1973) and Mandel (1973). Also, a specific form for W,
associated with crystal plasticity can be obtained using the work of Rice (1971) or Asaro
and Needleman (1985). Loret (1983) and Dafalias (1985) proposed specific continuum
constitutive equations for plastic spin which were mainly motivated by the desire to find a
better objective rate for hypoelastic formulations of plasticity theory. This work was
continued by Dafalias in a number of papers that are referred to in Dafalias (1987, 1988).
In particular, Dafalias (1985) and Loret (1983) assumed that W, is a function of the
deviatoric stress T’ and a backstress tensor & which transforms under SRBM by a trans-
formation of the type (22¢) so that

W, =W, (T, a). ©1)

Recognizing that invariance under SRBM requires W, to be an isotropic function of its
arguments, they used a representation theorem for isotropic functions to deduce the simplest
form for W,. Alternatively, it is possible to develop a more general form than (91) by
defining & as elastically embedded relative to « such that

a = F.aF’, (92)

and replacing « in (91) by & However, the resulting constitutive equation suffers from the
physical problems (P1) and (P2) since F, is influenced by changes in the intermediate
configuration which is directly related to plastic deformation from the reference configur-
ation.

To emphasize the more general nature of the present formulation it is noted that if the
vectors m; are included as independent variables in (91), then W, admits the representation

WP = WPU[T, : (m' ® ms)’ @ (mr ® ms)’ m m® mj» (93)

where W,; is an arbitrary skew-symmetric (in the indices ,j) function of its arguments.
This is similar to the development of the form for I, in eqn (36a). It is also similar to the
spin of the reference triad used by Raniecki and Mroz (1990) to characterize texture in
rigid—plastic solids.

Sometimes material anisotropy is characterized with respect to orientational tensors
instead of with respect to a specific vector triad. For example, one can examine the discussion
of Dafalias (1987) of the relationship between the work of Mandel (1973) and that of Onat
(1982). More specifically, Loret and Dafalias (1992) have formulated a constitutive equation
for plastic spin in terms of purely orientational structure variables associated with a set of
orthonormal vectors. However, Loret and Dafalias (1992) do not allow for the generality
of a form like (93). Further in this regard, it is mentioned that alternatively one could
assume that L is a function of the form
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L, = L,(m,0,x,§;D,6). (94)

Then, by requiring L, to be an isotropic function of its arguments it is possible to recover
the general form (33).

Next, it is mentioned that the functional forms of the Helmholtz free energy and the
relaxation effects of plasticity are in general influenced by changing values of x and §;. This
means that the theory can model changes in elastic and plastic properties due to the
evolution of texture. In particular, the triad m, can rotate and orient itself with directions
defined by the deformation history [this will be discussed in more detail in the companion
paper Rubin (1994)]. In this sense, the conclusion of Van der Giessen (1989) that the work
of Besseling (1968) cannot model hardening effects or texturing effects seems to be limited
to the assumption that the Helmholtz free energy and the plastic relaxation tensor do not
depend on hardening variables like ¥ and B, However, it should be mentioned that the
present work assumes that the RLS is unaffected by material processing. Within this
context, changes in the RLS may be considered to be a phase transition (a change from
one material to another) which has not been modeled explicitly.

In summary, the general theoretical structure discussed in this paper represents a
reasonably simple, physically based model for elastic—plastic materials. Within this context,
the outstanding problem remains the specification of physically meaningful constitutive
equations for the evolution equation (1) for the triad m, and the evolution equations
(36b,c) for the hardening variables. To this end, in a companion paper (Rubin, 1994),
specific constitutive equations are discussed for a class of materials which are elastically
isotropic but which exhibit directional properties for plastic relaxation effects.
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